Application of optical fibres for blade load measurement and condition monitoring

H.B. (Ben) Hendriks Albuquerque, February 2004

What is an optical fibre?

Reflected light with wavelength equal to distances between "scratches"

Contents of presentation

- Introduction to ECN
- Introduction to condition monitoring
- Possibilities of optical fibres
- Test set-up
- Experience with optical fibres
- FOBM system layout

Introduction to ECN

Priority Areas

- Solar (PV)
- Wind Energy
- Biomass
- Clean Fossil (Fuel Cells)
- Policy Studies
- Energy Efficiency in the Industry
- Renewable Energy i the Build Environm

Introduction to ECN

Wind Energy

"With 45 employees the unit holds a strategic position between universities and industry covering all relevant wind energy disciplines; from trouble shooting to long term R&D, from training courses and design support to wind farm development and risk management."

Four groups

- •Wind Farm Development
- •Wind Turbine Technology
- •Wind Farm Operation
- •Experiments

Introduction to ECN

Knowledge Centre WMC
(Wind turbine Materials and Constructions)

ECN Wind Turbine Test Farm Wieringermeer

Projects / Partners / Persons

DOWEC

(Erik Korterink,
Arno van der Werff)

- NEG Micon Holland
- LM Glassfibre Holland
- Ballast Nedam
- Van Oord ACZ
- Delft University of Technology

FOBM

(Luc Rademakers, Theo Verbruggen)

- NEG Micon Holland
- FOS
- NGUp
- Baas R&D

Need for condition monitoring in wind energy

- Preventing damage and directly related costs
- Preventing revenue losses in case of damage, most significant for offshore wind energy
- Limiting the number of attendances (time to repair or inspection)
- Optimum planning using predicted remaining lifetime (seasons offshore)

Need for condition monitoring

Break-down of Generating Costs Offshore Wind Energy

Results from the DOWEC study

Condition monitoring for wind turbines

- Condition monitoring is a proven method in other branches. The application in wind energy differs from the present application:
- Stochastic loading versus stationary operation
- Preventing damage versus enlarging preventive maintenance period
- Trade-off between higher investment and lower damage costs

Condition monitoring for wind turbines

Condition monitoring is applicable to many wind turbine components:

- Blades
- Drive train
- Main bearing
- Generator
- General behaviour (degradation of power curve)
- Other...

All possible failure modes of the blades have been investigated on possibilities for condition monitoring systems

Some can be detected by a strain measurement; on basis of a changed strain distribution or a change in natural frequency or cumulative load spectrum

Trailing edge transverse cracks (details, source Allianz))

- Supposed of a measuring strains with an optical fibre versus classical copper strain gauges:
- Non-conductive, important for lightning
- More simple instrumentation
- More reliable in time

Advantages to be demonstrated in 2 year R&D project

Topics of research:

- Accuracy of measurement (zero drift, temperature influence)
- Reliability in time (opto-electronics, sensors)

Next to field tests, laboratory experiments are planned in the WMC

Test set-up

Distributed system:

- front-ends at different locations: sensor power supply and all signal conditioning, EMC proof
- e glass fiber connections
- one central host pc: data collection and backup, transfer to ECN database

Fibre Optic Blade Monitoring (FOBM)

Applications for Wind Farm Operators

- 1. Converting raw data (*strain*) into meaningful parameters (*loads, vibrations*) for blade monitoring:
 - •Assessment of loads (extreme loads, fatigue load spectra, consumption of lifetime)
 - Assessment of health and degradation
 - •Design verification using design data
- 2. Informing operators about required O&M effort of blades

Example of time series

FOBM: Hardware

Equivalent loads:

 $N = CS^{-m}$

N = fixed $number\ of$ cycles

C, m = materialproperties

S = equivalent load

Natural frequency of blade 2 at 14 m/s wind speed

Natural
frequency of
blade 2 and
blade 1 at 14 m/s
wind speed

Any questions?

